Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 196, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373902

RESUMO

Lumpy skin disease virus (LSDV) belongs to the genus Capripoxvirus and family Poxviridae. LSDV was endemic in most of Africa, the Middle East and Turkey, but since 2015, several outbreaks have been reported in other countries. In this study, we used whole genome sequencing approach to investigate the origin of the outbreak and understand the genomic landscape of the virus. Our study showed that the LSDV strain of 2022 outbreak exhibited many genetic variations compared to the Reference Neethling strain sequence and the previous field strains. A total of 1819 variations were found in 22 genome sequences, which includes 399 extragenic mutations, 153 insertion frameshift mutations, 234 deletion frameshift mutations, 271 Single nucleotide polymorphisms (SNPs) and 762 silent SNPs. Thirty-eight genes have more than 2 variations per gene, and these genes belong to viral-core proteins, viral binding proteins, replication, and RNA polymerase proteins. We highlight the importance of several SNPs in various genes, which may play an essential role in the pathogenesis of LSDV. Phylogenetic analysis performed on all whole genome sequences of LSDV showed two types of variants in India. One group of the variant with fewer mutations was found to lie closer to the LSDV 2019 strain from Ranchi while the other group clustered with previous Russian outbreaks from 2015. Our study highlights the importance of genomic characterization of viral outbreaks to not only monitor the frequency of mutations but also address its role in pathogenesis of LSDV as the outbreak continues.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Vírus da Doença Nodular Cutânea/genética , Doença Nodular Cutânea/epidemiologia , Doença Nodular Cutânea/genética , Filogenia , Genômica , Surtos de Doenças
2.
Virology ; 585: 127-138, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37336054

RESUMO

The genomic characterization of emerging pathogens is critical for unraveling their origin and tracking their dissemination. Lumpy skin disease virus (LSDV) is a rapidly emerging pathogen in Asia including China. Although the first Lumpy skin disease (LSD) outbreak was reported in 2019, the origin, transmission, and evolutionary trajectory of LSDV in China have remained obscure. The viral genome of a circulating LSDV strain in China, abbreviated LSDV/FJ/CHA/2021, was sequenced using the next-generation sequencing technique. The morphology and cytoplasmic viral factory of these LSDV isolates were observed using transmission electron microscopy. Subsequently, the genomic characterization of this LSDV isolate was systematically analyzed for the first time using the bioinformatics software. The current study revealed that several mutations in the genome of LSDV isolates circulating in China were identified using single nucleotide polymorphisms (SNPs) analysis, an instrument to evaluate for continuous adaptive evaluation of a virus. Furthermore, phylogenomic analysis was used to identify the lineage using the whole genome sequences of 44 LSDV isolates. The result revealed that the isolates from China were closely similar to that of the LSDV isolates from Vietnam, which are divided into a monophyletic lineage sub-group I. The SNPs and Simplot analysis indicate no significant occurrence of the recombinant event on the genome of LSDV isolates in China. Notably, the live virus challenge experiment demonstrated that the pathogenic characterization of this LSDV isolate belongs to a virulent strain. Collectively, we gain the first insight into the evolutionary trajectory, spatiotemporal transmission, and pathogenic characterization of circulating LSDV in China. This study provides a unique reference for risk assessment, guiding diagnostics, and prevention in epizootic and non-epizootic areas.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Vírus da Doença Nodular Cutânea/genética , Filogenia , Doença Nodular Cutânea/epidemiologia , Doença Nodular Cutânea/genética , Sequência de Bases , Surtos de Doenças , China/epidemiologia
3.
Anal Chim Acta ; 1221: 340079, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35934339

RESUMO

Lumpy skin disease (LSD) in cattle, a transboundary viral disease of cattle once restricted to Africa, has been spreading to many European and Asian countries in the past decade with huge economic losses. This emerging worldwide threat to cattle warrants the development of diagnostic methods for accurate disease screening of suspected samples to effectively control the spread of LSD. In this study, we integrated pre-amplification and three kinds of sensor systems with CRISPR and therefore established an LSD diagnosis platform with highly adaptable and ultra-sensitive advantages. It was the first CRISPR-powered platform that could identify lumpy skin disease virus from vaccine strains of goat pox virus and sheep pox virus. Its limit of detection (LOD) was one copy/reaction after introducing PCR or recombinase-aided amplification (RAA). Moreover, this platform achieved a satisfactory overall agreement in clinical diagnoses of 50 samples and its reproducibility and accuracy were superior to other qPCR methods we tested. The whole diagnostic procedure, from DNA extraction to the results, could complete in 5 h with a total cost of 1.7-9.6 $/test. Overall, this CRISPR-powered platform provided a novel diagnostic tool for portable, ultra-sensitive, rapid, and highly adaptable disease screening of LSD and may be an effective method to control this transboundary disease's spread.


Assuntos
Capripoxvirus , Doença Nodular Cutânea , Animais , Bovinos , Capripoxvirus/genética , Sistemas CRISPR-Cas , Doença Nodular Cutânea/diagnóstico , Doença Nodular Cutânea/genética , Doença Nodular Cutânea/prevenção & controle , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Ovinos/genética
4.
PLoS One ; 16(1): e0241022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33428633

RESUMO

Lumpy skin disease (LSD) has devastating economic impact. During the last decade, LSD had spread to climatically new and previously disease-free countries, which also includes its recent emergence in the Indian subcontinent (2019). This study deals with the LSD outbreak(s) from cattle in Ranchi (India). Virus was isolated from the scabs (skin lesions) in the primary goat kidney cells. Phylogenetic analysis based on nucleotide sequencing of LSD virus (LSDV) ORF011, ORF012 and ORF036 suggested that the isolated virus (LSDV/Bos taurus-tc/India/2019/Ranchi) is closely related to Kenyan LSDV strains. Further, we adapted the isolated virus in Vero cells. Infection of the isolated LSDV to Vero cells did not produce cytopathic effect (CPE) until the 4th blind passage, but upon adaptation, it produced high viral titres in the cultured cells. The kinetics of viral DNA synthesis and one-step growth curve analysis suggested that Vero cell-adapted LSDV initiates synthesizing its genome at ~24 hours post-infection (hpi) with a peak level at ~96 hpi whereas evidence of progeny virus particles was observed at 36-48 hours (h) with a peak titre at ~120 h. To the best of our knowledge, this study describes the first successful isolation of LSDV in India, besides providing insights into the life cycle Vero cell-adapted LSDV.


Assuntos
Genoma Viral , Doença Nodular Cutânea/genética , Vírus da Doença Nodular Cutânea/genética , Fases de Leitura Aberta , Filogenia , Animais , Bovinos , Chlorocebus aethiops , Surtos de Doenças , Índia/epidemiologia , Doença Nodular Cutânea/epidemiologia , Vírus da Doença Nodular Cutânea/isolamento & purificação , Vírus da Doença Nodular Cutânea/metabolismo , Células Vero
5.
J Gen Virol ; 101(6): 645-650, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32391749

RESUMO

Lumpy skin disease virus (LSDV), a Capripoxvirus, is of economic importance in the cattle industry and is controlled by vaccination. A comparison was made of the host response to the two LSDV vaccines Neethling and Herbivac LS, with reference to the well-studied Orthopoxvirus, modified vaccinia Ankara (MVA), in a mouse model. Because the vaccines differ at the superoxide dismutase homologue (SOD) gene locus, recombinant SOD knock-out and knock-in nLSDV vaccines were constructed and all four vaccines were tested for the induction and inhibition of apoptosis. The SOD homologue was associated both with induction of apoptosis as well as inhibition of camptothecin-induced apoptosis. Histological analysis of chorioallantoic membranes of fertilized hens' eggs infected with the four different vaccines indicated marked mesodermal proliferation associated with vaccines containing the full-length SOD homologue as well as increased immune cell infiltration. Our findings suggest that the SOD homologue may influence vaccine immunogenicity.


Assuntos
Apoptose/genética , Interações Hospedeiro-Patógeno/genética , Doença Nodular Cutânea/genética , Doença Nodular Cutânea/virologia , Vírus da Doença Nodular Cutânea/genética , Superóxido Dismutase/genética , Transcrição Gênica/genética , Animais , Apoptose/imunologia , Bovinos , Galinhas/imunologia , Galinhas/virologia , Feminino , Doença Nodular Cutânea/imunologia , Vírus da Doença Nodular Cutânea/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Superóxido Dismutase/imunologia , Transcrição Gênica/imunologia , Vacinação/métodos , Vacinas Atenuadas/imunologia , Vírus Vaccinia/genética , Vírus Vaccinia/imunologia , Vacinas Virais/imunologia
6.
J Immunol Methods ; 448: 112-115, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28576653

RESUMO

Capripoxviruses (CaPVs) have been shown to be ideal viral vectors for the development of recombinant multivalent vaccines to enable delivery of immunogenic genes from ruminant pathogens. So far, the viral thymidine kinase (TK) gene is the only gene used to generate recombinants. A putative non-essential gene encoding a G-protein-coupled chemokine receptor subfamily homologue (GPCR) was targeted as an additional insertion site. Peste des petits ruminants (PPR) was chosen as a disease model. A new recombinant CaPV expressing the viral attachment hemagglutinin (H) of the PPR virus (PPRV) in the GPCR insertion site (rKS1-HPPR-GPCR) was generated in the backbone North African isolate KS1 strain of lumpy skin disease virus (LSDV). Comparison with the recombinant CaPV expressing the H of PPRV in the TK gene (rKS1-HPPR-TK) shown to induce protection against both PPR and LSD in both sheep and goats was assessed. The suitability of the GPCR gene to be a putative additional insertion site in the CaPV genome is evaluated and discussed.


Assuntos
Capripoxvirus/genética , Vetores Genéticos , Doença Nodular Cutânea/prevenção & controle , Vírus da Doença Nodular Cutânea/genética , Mutagênese Insercional , Peste dos Pequenos Ruminantes/prevenção & controle , Vírus da Peste dos Pequenos Ruminantes/genética , Receptores de Quimiocinas/genética , Receptores Acoplados a Proteínas G/genética , Vacinas Virais/genética , Animais , Anticorpos Antivirais/sangue , Bovinos , Chlorocebus aethiops , Cabras , Hemaglutininas Virais/administração & dosagem , Hemaglutininas Virais/genética , Hemaglutininas Virais/imunologia , Injeções Subcutâneas , Doença Nodular Cutânea/genética , Doença Nodular Cutânea/imunologia , Doença Nodular Cutânea/virologia , Vírus da Doença Nodular Cutânea/imunologia , Peste dos Pequenos Ruminantes/genética , Peste dos Pequenos Ruminantes/imunologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/imunologia , Receptores de Quimiocinas/administração & dosagem , Receptores de Quimiocinas/imunologia , Receptores Acoplados a Proteínas G/administração & dosagem , Receptores Acoplados a Proteínas G/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Células Vero , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Cultura de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...